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Summary: Mild and efficient reactions for the conversion of optically active 2,3-epoxy- 
ha/Ides to optically active allylic alcohols and optically active epoxides are described. 

In conjunction with a program directed towards the total synthesis of ionophores and 

brevetoxin I? we had the opportunity to examine the chemistry of 2-haloepoxides (I) 

CHO 

H H H Me 

Brevetoxin B 

readily available in optically active form by Sharpless asymmetric epoxidation3 of allylic 

alcohols followed by conventional manipulation 495 of the primary hydroxyl. We now wish 
to describe synthetically useful methods for the conversion of such intermediates to (a) 

optically active allylic alcohols (II) and (b) optically active homoallylic epoxides - 
(IJ) (Scheme 1). 
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The crucial observation was 

dropwise added to a preformed 

each) in THF at -23’C leading 

modification of these conditions 

made when a THF solution of iodide 6 (Table 1) was -- 
(10 mins. ) mixture of CH2=CHMgBr and CuI (2 eq. 

cleanly to the allylic alcohol 6a (90% yield), whereas - 
to dropwise addition of CH2=CHMgBr (2 eq.) to a 

n 
mixture of iodide 5, CuI (0.1 eq. ) and HMPA (4 .O eq. ) in THF at -23”C, led almost 

exclusively, to the substitution product homoallylic epoxide & (85% yield) .6’7 It was 

later found that formation of the vinyl alcohols could also be realized in a more convenient 

way by treatment of I (Scheme 1, X=1, Br) with NaI (2.5 eq.) and Zn dust (3.0 eq.) 

in refluxing MeOH (Method B) or by exposure of I (Scheme 1, X=1, Br, Cl) to nBuLi - 
(2.5 eq.) in THF at -23’C (Method A). 

Tables 1 and 2 demonstrate the versatility, mildness and efficiency of the above two 

processes. Coupled with the power of the Sharpless asymmetric epoxidation,3 this 

methodology could deliver a variety of highly functionalized and enriched chiral building 

blocks of either enantiomeric form. 

The following experimental procedures are representative for the two reactions 

described herein. 

Preparation of 5c from 5. To a yixture of iodide S (1.0 mmole) , CuI (0.1 mmole) 

and HMPA (4.0 mmole) in dry THF (1 ml) at -23’C under argon was added 

CH2=CHMgBr (1M THF solution; 2.0 mmole). After stirring at -23’C for 15 mins. the 

reaction was quenched (Et20-NH4C1 aq.) and after warming to room temperature, the usual 

work-up and silica flash column chromatography afforded compound 6c8 as a colorless - 
oil in 85% yield, Rf=0.24 (silica, 20% Et20 in petroleum ether). 

Preparation of 4a from 4 by Method B. A mixture of bromide 4 (1.0 mmole) , NaI 

(2.5 eq. ) and purified Zn dust (3 .O eq. ) in absolute MeOH (5 ml) was refluxed under 

argon for 3.5 hrs. The cooled reaction mixture was then diluted with Et20 (50 ml), 

filtered and the solution washed with H20, NaCl saturated aq. solution and dried 

(MgSG4). After evaporation and silica flash column chromatography compound + 9 was 

obtained in 91% yield as a colorless oil, Rf=0.45 (silica, 50% Et20 in petroleum ether. 

Analysis of this material by Mosher ester lo formation ((-)-a-methoxy-a-(trifluoro 

methyl)phenylacetic acid, DCC, DMAP cat., THF, 25’C, 6 hrs) and ‘H NMR 

spectroscopy revealed 93% ee. 
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Method A: n BuLi. THF. -23’ C; Mahad B: Zn dust Nal Iomitted in sntria 3 and 5MOH. nflux. 

Table 2. Svnthesir of Optiullv Active Homoallvlic Epoxider 
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Conditions: ClipCWMgBr 12.0 eql in THF added to iodide, WI (0.1 eq). HMPA (4.0 mq), THF. -230 C. 
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